If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+2n=1000
We move all terms to the left:
n^2+2n-(1000)=0
a = 1; b = 2; c = -1000;
Δ = b2-4ac
Δ = 22-4·1·(-1000)
Δ = 4004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4004}=\sqrt{4*1001}=\sqrt{4}*\sqrt{1001}=2\sqrt{1001}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{1001}}{2*1}=\frac{-2-2\sqrt{1001}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{1001}}{2*1}=\frac{-2+2\sqrt{1001}}{2} $
| 5/7=p=4.7 | | 7+m=49 | | -4.9x^2+30x-40.4=0 | | 1/3x-24=-16 | | 2.8+10m=8.47 | | 93=7s+16 | | k-8=11.2 | | s/3=-13 | | 20+10x=44 | | 28+-4x=2x+8 | | (X-3)(x+8)(x-11)=0 | | 4x+6x=2x+10 | | 2p+6=36 | | 11x=2x-18 | | 15=21-2d | | 56=1/2(8×h) | | 2x-1/x+1=3/2 | | 2p+8=11 | | 56=1/2(8)×1/2h | | -3=2k-4 | | 3m+16=52 | | 3d+6=8 | | 4t-11=1 | | 7=5-2q | | 5+2.25x=0.25x+3 | | 4h-15=5 | | 2n-12=15n-43 | | -z+6=9 | | -16=f/2-19 | | 40=-4f | | -2=2z-4 | | 13+8=-3(6x-7) |